
ApiDoc Documentation
Release 1.4

Jeremy Derusse

Apr 18, 2017

Contents

1 Summary 3

2 Requirements 5

3 Contents 7
3.1 Quick Start . 7
3.2 Usage of ApiDoc . 8
3.3 Config’s File Format . 9
3.4 Source’s File Format . 11
3.5 Contributing . 25

4 Licenses 29

i

ii

ApiDoc Documentation, Release 1.4

Contents 1

ApiDoc Documentation, Release 1.4

2 Contents

CHAPTER 1

Summary

ApiDoc is a documentation generator designe for API built with Python and given by SFR Business Team.

ApiDoc consists of a command line interface. It is maintained in a single repository. By using this application you
automatically require all of the necessary modules dependencies which are:

• Demo: http://solutionscloud.github.io/apidoc/demo

• Home Page: http://solutionscloud.github.io/apidoc

• Documentation: http://apidoc.rtfd.org

• Bug Tracker: https://github.com/SolutionsCloud/apidoc/issues

• GitHub: https://github.com/SolutionsCloud/apidoc

• PyPI: https://preview-pypi.python.org/project/ApiDoc

• License: GPLv3+

3

http://solutionscloud.github.io/apidoc
http://www.sfrbusinessteam.fr
http://solutionscloud.github.io/apidoc/demo
http://solutionscloud.github.io/apidoc
http://apidoc.rtfd.org
https://github.com/SolutionsCloud/apidoc/issues
https://github.com/SolutionsCloud/apidoc
https://preview-pypi.python.org/project/ApiDoc

ApiDoc Documentation, Release 1.4

4 Chapter 1. Summary

CHAPTER 2

Requirements

For core application

• PyYAML

• Jinja2

• JsonSchema

For developers who want to contribute code to ApiDoc

• behave

• coverage

• mock

• nose

• yuicompressor

• Sphinx

5

ApiDoc Documentation, Release 1.4

6 Chapter 2. Requirements

CHAPTER 3

Contents

Quick Start

Installation

The fastest way to get started is by using the command line tool

$ sudo apt-get install python3-pip
$ sudo pip3 install apidoc

If the package python3-pip does not exists.

$ sudo apt-get install python3-setuptools
$ sudo easy_install3 pip
$ sudo pip3-2 install apidoc

The config parser script depends on PyYAML which links with LibYAML, which brings a performance boost to the
PyYAML parser. However, installing LibYAML is optional but recommended. On Mac OS X, you can use homebrew
to install LibYAML:

$ brew install libyaml

On Linux, use your favorite package manager to install LibYAML. Here’s how you do it on Debian/Ubuntu:

$ sudo apt-get install libyaml-dev python3-dev

On Windows, please install PyYAML using the binaries they provide

Run a sample demo

$ mkdir apidoc
$ cd apidoc

7

ApiDoc Documentation, Release 1.4

$ wget https://raw.github.com/SolutionsCloud/apidoc/master/example/demo/source.yml
$ apidoc -i source.yml -o output/index.html
$ firefox output/index.html

Usage of ApiDoc

Main commands

apidoc builds the full documentation

$ apidoc -h

Generics Arguments

To generate documentation from a given source file:

$ apidoc -i ./example/source_simple/simple.yml

see page Source’s File Format

To generate documentation from split sources in multiple files:

$ apidoc -i ./example/source_multiple/one.yml ./example/source_multiple/two.yml

see page Source’s File Format

To generate documentation from the files contained in a given directory:

$ apidoc -i ./example/source_multiple/

see page Source’s File Format

To generate documentation with options defined in a given config file:

$ apidoc -c ./example/config/config.yaml

see page Config’s File Format

Combining those options:

$ apidoc -c ./config.yaml -i ./folder1/ ./folder2/ /folder3/file.yaml /folder3/file.
→˓json

Analyse the sources files without buiilding the documentation:

$ apidoc -i ./example/source_simple/simple.yml -y

Render automaticly the documentation each time a file is changed:

$ apidoc -i ./example/source_simple/simple.yml -w

Display less logging informations

8 Chapter 3. Contents

ApiDoc Documentation, Release 1.4

$ apidoc -i ./example/source_simple/simple.yml -q
$ apidoc -i ./example/source_simple/simple.yml -qq

Display traceback (for advanced users)

$ apidoc -i ./example/source_simple/simple.yml -t

Config’s File Format

ApiDoc can be used with arguments in the command line or with a config file containing the list of options (or both
arguments and config file)

The format of the config file can be either YAML or JSON, the extension of the file must be respectively .yaml (or .yml)
or .json

Usage

To use ApiDoc with a config file call the following arguments :

$ apidoc -c ./path-to-config.yaml

Sample

This is a minimalistic sample of a config file

input:
locations:
- ./sources/one.yml

output:
location: ./output/sample.html

Here is a basic sample of a config file

input:
locations:
- ./sources
- ./sources2/one.yml

arguments:
url: api.sfr.com

filter:
versions:
excludes:

- v2
output:

location: ./output/sample.html
componants: local
template: default

3.3. Config’s File Format 9

ApiDoc Documentation, Release 1.4

input

The section input defines where the source files are located. It contains three sub sections locations validate and
arguments. The first subsection contains a list of directories or files and the third a list of arguments (or variables)
which will be used by the source files (see Variables). The validate flag define if the sources files should be validate by
the json schema validator. As for config files, the extensions of source files must be .yaml (or .yml) or .json. When a
directory is specified in the locations subsection, all the source files (with a valid extension) contained in the directory
(or in a sub directory) will be merged into a single virtual source file which will be used to generate the documentation
(see Source’s File Format). A config file must reference at least one input source file.

This is a full sample of the section input

input:
locations:
- ./project/api-sources
- ../common-api/sources
- ./project/api-v2-source/demo.yaml
- ./project/api-v2-source/common.yaml

validate: False
arguments:
url: api.sfr.com
defaultVersion: v1

filter

The section filter provides a way to exclude or include versions and/or category in the rendered documentation. This
section contains two sub sections : versions and categories which both contain two subsections includes and excludes.
To include a specifique list of versions (or categories) and ignoring the others, specify these versions (or categories)
in the includes subsection. To ignore a specific list of versions (or categories) and including the others, specify these
versions (or categories) in the exclude‘subsection. If the ‘filter section is missing (or empty), all versions and sections
will be displayed. If the versions (or categories) subsection is missing (or empty), all versions (or categories) will be
displayed. If the includes subsection is missing (or empty), all but excluded versions (or categories) will be displayed.
If the excludes subsection is missing (or empty), no versions (or categories) will be removed.

The excluded versions (and categories) will be removed at the end of the rendering process. If a displayed version (or
category) extends an ignored version (or category), this version will be displayed normally.

Here is a full sample of a section filter

filter:
versions:
includes:

- v1.0
- v2.0

categories:
excludes:

- Experiment
- Draft

filter:
versions:
excludes:

- v3.0
categories:
include:

- Authentication
- Common

10 Chapter 3. Contents

ApiDoc Documentation, Release 1.4

output

The section describes the format and the location of the rendered documentation. It contains three subsections: loca-
tion, template and componants. The location subsection defines the relative (or absolute) path to the file where ApiDoc
will generate the documentation. When the value is stdout the rendered result will be display on the standard output
of the console. (Beware of using this mode with the command analyse-watch) The template subsection defines the
relative (or absolute) path to the template used to render the documentation. ApiDoc uses the template engine Jinja,
for a full documentation see the official site. When the value is default ApiDoc will use the default template. The
componants subsection defines where the assets (css, javascripts, images, fonts) are stored. The possible values are:

• local: The files are stored in the same folder as the output

• embedded: The files are embedded in the generated documentation

• remote: the generated documentation will reference remote assets using CDN or public repositories

• without: The files are not generated in documentation

The layout subsection defines the layout used by default template. The possible values are:

• default: Standard layout with header

• content-only: Layout without headers

This is a full sample of the section ouput

output:
location: ./project/documentation.html
componants: ./project/template/custom.html
template: default
layout: default

Source’s File Format

ApiDoc uses source file(s) to generate the documentation. The format of the source file can be YAML or JSON, the
extension of the files must be repectively .yaml (or .yml) or .json

This is a basic sample of a config file

configuration:
title: Hello API
description: An API dedicated to the hello service
uri: ${base_url}

categories:
Display:
description: Display messages

Config:
description: Configure the application

versions:
v1.0:
methods:

Hello:
category: Display
uri: /
description: Say hello

3.4. Source’s File Format 11

http://jinja.pocoo.org/

ApiDoc Documentation, Release 1.4

response_body:
type: string
sample: Hello

HelloName:
category: Display
uri: /{name}
request_parameters:
name:

type: string
description: Name of the user

request_headers:
Accept:
type: mimeType
description: List of accepted MimeTypes
sample: text/plain

response_body:
type: string
sample: Hello my_name

ConfigHello:
category: Config
uri: /
method: PUT
description: Configure the hello method
request_body:
type: object
properties:

language:
type: string
sample: "fr"

response_body:
type: boolean

types:
mimeType:

item:
type: string
sample: application/json

format:
pretty: type/sous-type

v2.O:
status: beta
display: false

All elements are optional, but a least one displayable method is required.

configuration

The configuration contains major information of your documentation.

• uri: Common URI of your API (ie: https://api.sfr.com/service/)

• title: The name of your API. It will be displayed in the title tag, and in the header of the documentation

• description: A description of your API. It will be displayed under the title in the header of the documentation

sample:

configuration:
title: Hello API

12 Chapter 3. Contents

https://api.sfr.com/service/

ApiDoc Documentation, Release 1.4

description: An API dedicated to the hello service
uri: https://api.sfr.com/services/hello

versions

This element contains a dictionary of versions. Each version is associated with a key which is the name of the version.
At least one version is required.

• display: Boolean Defining if the version is displayed or not.

• label: The label of the version who will be display in the documentation.

• uri: Completes the URI of the element configuration.

• major: Major part of the version number.

• minor: Minor part of the version number.

• status (current, beta, deprecated, draft): Status of the version.

• methods: List of methods contained in the version (see methods).

• types: List of types contained in the version (see types).

• references: List of references contained in the version (see references).

sample:

versions:
v1.0:
display: true
label: Version 1
uri: /v1
major: 1
minor: 0
status: current
methods:

...
v2.0:
display: false
uri: /v2
major: 2
minor: 0
status: beta
methods:

...

categories

This element contains a dictionary of categories; a category is a kind of folder in the rendered documentation. Each
category is associated to a key which is the name of the category. This elements is not required. A method (or a type)
can have an attribute category which does not exist in this dictionnary. But this element allows you to configure the
category by giving a description or a priority order.

• display: Boolean defining if the category is displayed or not

• label: The label of the category who will be display in the documentation

• description: A description of the category. It will be dislayed under the name of the category

3.4. Source’s File Format 13

ApiDoc Documentation, Release 1.4

• order: A number used to sort the categories and define in which order they will be displayed. Default value is
99. When two categories have the same order, they will be sorted alphabetically by name.

sample:

categories:
Common:
display: false
description: a helper section use for extension

Version:
description: List the version of the API
order: 1

Authentication:
label: Authentication + Logout
description: How to login and logout the client

methods

This element contains a dictionary of methods. Each method is associated with a key which is the name of the method.
At least one method is required.

• label: The label of the method who will be display in the documentation.

• description: A description of the method. It will be dislayed under the name of the method.

• uri: Endpoint of the method based on the URI found in configuration and version. Parameters are declared
between curly bracket.

• method (get, post, put, delete, head, http): Type of method used in this endpoint (default get).

• code: Normal code returned by the method (default 200). This information will be displayed in the sample
generated in the documentation.

• request_parameters: List of parameters sent in the URI of the method (see request_parameters).

• request_headers: List of parameters sent in the headers of the method (see request_headers).

• request_body: Request object sent in the body of the method (see request_body).

• response_codes: List of codes received in the headers of the method (see response_codes).

• response_body: Response object received in the body of the method (see response_body).

• category: The name of the category to which the method belongs.

sample:

methods:
Hello:
label: Echo
uri: /hello-{name}.json
method: get
code: 200
description: Say hello
request_parameters:

...
request_headers:

...
request_body:

...
response_codes:

14 Chapter 3. Contents

ApiDoc Documentation, Release 1.4

...
response_body:

...

request_parameters

This element contains a dictionary of query parameters contained in the URI. Each parameter is associated with a key
which is the name of the parameter. If a parameter is defined in this elements but is not on the URI, it will not be
displayed. This can be usefull when you use extensions. The parameters will be displayed in the same order as they
appear in the URI

• type: Type of the parameter (see types).

• description: A description of the parameter.

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

• sample: A sample value which will be displayed in the sample fieldset.

• generic: If true, the parameter will be displayed in an other color. Default False.

sample:

request_parameters:
name:
type: string
description: Name of the user
optional: false
sample: John Doe
generic: false

language:
type: string
description: Language of the response
optional: true
sample: fr
generic: true

request_headers

This element contains a dictionary of header parameters expected by the method. Each parameter is associated with a
key which is the name of the parameter.

• type: Type of the parameter (see types).

• description: A description of the parameter.

• optional: A boolean indicated if the parameter is compulsory or optional.

• sample: A sample value which will be displayed in the sample fieldset.

• generic: If true, the parameter will be displayed in an other color. Default False.

sample:

request_headers:
Accept:
type: mimeType
description: List of accepted MimeTypes
sample: text/plain

3.4. Source’s File Format 15

ApiDoc Documentation, Release 1.4

optional: true
generic: true

X-Auth-Token:
type: string
description: Authentication token

request_body

This element contains an object which represents the raw content sent in the body of the request (see Objects).

sample:

request_body
type: object
description: Root envelope
properties:

login:
type: string

password:
type: string

response_codes

This element contains a list of reponse codes returned by the method.

• code: The numeric code returned in the response

• message: A message associated to the response. When omitted, the default message associated with the code
will be used

• description: A description of the response

• generic: If true, the parameter will be displayed in an other color. Default False

sample:

response_codes:
- code: 400

message: Bad name format
description: The resource name is not correct

- code: 404
message: Resource not found
generic: true

response_body

This element contains an object which represents the response received in the body of the response (see Objects).

sample:

request_body
type: array
description: List of users
items:
type: object
properties:

16 Chapter 3. Contents

ApiDoc Documentation, Release 1.4

name:
type: string
description: Name of the user

role:
type: CustomRole
description: Role of the user

types

This element contains a dictionary of types used by other elements. Each reference is associated with a key which is
the name of the type. When a type is declared but never used, a warning will be fired in the logs and the type will not
be displayed.

• category: The name of the category to which the type belongs.

• description: A description of the type.

• item: The content of the type (see Objects).

• format: Some representations of the type.

– pretty: A well formated representation of the type.

– advanced: A technically accurate representation of the type.

sample:

types:
mimeType:
category: Common
description: A mime type
item:

type: string
sample: application/json

format:
pretty: type/sous-type
advanced: [a-z]\/[a-z]

languages:
category: Lists
description: List of supported language
item:

type: enum
values:
- en
- fr
descriptions:

en:
description: English

fr:
description: Français

references

This element contains a dictionary of references used by objects. Each reference is associated with a key which is the
name of the reference. The reference is not displayed directly, it is a complex object which could be used in other
elements.

3.4. Source’s File Format 17

ApiDoc Documentation, Release 1.4

sample:

methods:
listComments:
...
response_body:

type: array
items:

type: reference
reference: comment

reference:
comment:
type: object
properties:

owner:
type: reference
reference: user

message:
type: string

date:
type: string

user:
type: object
name:

type: string
language:

type: string

Objects

In the bodies of types, requests and responses you can define a complex object using basic elements. These elements
(defined below) contain always a keyword “type” which defines the type of the element. The known types, are
object, array, dynamic, boolean, none, string, number, integer, reference, const, enum. If the type is not in this
list, ApiDoc will look in the elements declared in the types section (see types). Each elements contains an attribute
optional indicating if the element is compulsory or optional. They also contains an attribute constraints containing a
dictionnary constraints. Some constraints are predefined depending of the type of the element, but it”s also possible
to define custom constraints (a reference to yout business model for example). No check will be applied on sample
according to these constraints, they only will be display in a popover in the rendered documentation. These constraints
are derived from Json Schema

String

The object String defines a string.

• description: A description of the string

• sample: A sample value which will be displayed in the sample fieldset.

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

• maxLength: A positive integer is expected.

• minLength: A positive integer is expected.

• pattern: A string is expected. It who should be a regular expression, according to the ECMA 262 regular
expression dialect.

18 Chapter 3. Contents

http://json-schema.org/

ApiDoc Documentation, Release 1.4

• format: A string is expteced. It must be one of the values found in this list (date-time, email, hostname, ipv4,
ipv6, uri).

• enum: An array of string is expected.

• default: A string is expected.

• constraints: A dictionary of constraints * {constraint_name}: A string is expected

sample:

name:
type: string
description: Name of the user
sample: John Doe
minLength: 1
maxLength: 32

Number

The object Number defines a numeric value with optionals decimals.

• description: A description of the number

• sample: A sample value which will be displayed in the sample fieldset.

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

• multipleOf: A number is expected.

• maximum: A number is expected.

• exclusiveMaximum: A boolean is expected.

• minimum: A number is expected.

• exclusiveMinimum: A boolean is expected.

• enum: An array of number is expected.

• default: A number is expected.

• constraints: A dictionary of constraints * {constraint_name}: A string is expected

sample:

price:
type: number
description: Price in dollars
sample: 20.3
maximum: 0
multipleOf: 0.01

Integer

The object Integer defines a numeric value without decimal.

• description: A description of the number

• sample: A sample value which will be displayed in the sample fieldset.

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

3.4. Source’s File Format 19

ApiDoc Documentation, Release 1.4

• multipleOf: A integer is expected.

• maximum: A integer is expected.

• exclusiveMaximum: A boolean is expected.

• minimum: A integer is expected.

• exclusiveMinimum: A boolean is expected.

• enum: An array of integer is expected.

• default: A integer is expected.

• constraints: A dictionary of constraints * {constraint_name}: A string is expected

sample:

age:
type: number
description: Age of the user
sample: 20
maximum: 0

Boolean

The object Boolean defines a boolean.

• description: A description of the boolean

• sample: A sample value which will be displayed on the sample fieldset.

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

• default: A boolean is expected.

• constraints: A dictionary of constraints * {constraint_name}: A string is expected

sample:

is_default:
type: boolean
description: Define if the group is the default group
sample: false
default: false

None

The object None defines an empty object. Sometime used in a request when a key is compulsory but no value is
expected.

• description: A description of the object

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

• constraints: A dictionary of constraints * {constraint_name}: A string is expected

sample:

20 Chapter 3. Contents

ApiDoc Documentation, Release 1.4

reboot:
type: none
description: Set this key if you want reboot your server
constraints:
compulsory: yes

Const

The object Const defines an constant property. Sometime used in a request like the property “method” in Json-RPC.

• description: A description of the object

• cont_type: A scalar type of the constant (allowed values are string, number, integer, boolean). If undefined
string will be used

• value: The value associated to the property

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

• constraints: A dictionary of constraints * {constraint_name}: A string is expected

sample:

method:
type: const
description: Json-RPC method name
const_type: string
value: "find"
constraints:
required: authenticated user

Enum

The object Enum defines a list a availables values. When this object is the primary object of an type (see types) the
values with there descriptions will be displayedin the Type section.

• description: A description of the object

• values: An array of values

• descriptions: A dictionnary of description for each value

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

• constraints: A dictionary of constraints * {constraint_name}: A string is expected

sample:

httpMethods:
type: enum
description: List of Http methods used in Rest
values:
- GET
- POST
- PUT
- DELETE
descriptions:
GET: Like select
POST: Like insert

3.4. Source’s File Format 21

ApiDoc Documentation, Release 1.4

PUT: Like update
DELETE: Like delete

sample: GET
constraints:
required: authenticated user

Object

The object Object defines a complex object containing a dictionnary of properties, patternProperties or additional-
Properties. Each property is associated with a key which is the name of the property.

• description: A description of the object

• properties: List of properties of the object

• patternProperties: List of properties of the object where the key is a regular expression

• additionalProperties: A boolean False when additional properties are not allowed, Otherwise it’s an object

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

• constraints: A dictionary of constraints * {constraint_name}: A string is expected

sample:

element:
type: object
description: User to update
properties:
name:

type: string
description: New name of the user

metadata:
type: object
additionalProperties:

type: string
constraints:
required: authenticated user

Array

The object Array defines an array of objects.

• description: A description of the array

• items: A representation of the items contained in the array

• sample_count: Number of items to display in the sample fieldset

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

• maxItems: A positive integer is expected.

• minItems: A positive integer is expected.

• uniqueItems: A boolean is expected.

• constraints: A dictionary of constraints * {constraint_name}: A string is expected

sample:

22 Chapter 3. Contents

ApiDoc Documentation, Release 1.4

elements:
type: array
description: List of users
items:
type: object
properties:

name:
type: string
description: New name of the user

maxItems: 10

Reference

The object Reference defines a reference to a referenced object. Reference is the only one elements who does not have
constraints. This constraints are defined in the refererenced item.

• reference: Name of the reference

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

sample:

user:
type: reference
reference: GenericUser

Dynamic (deprecated)

The object Dynamic defines a special object where the key, which must be a string, is dynamic. You should use object
with additionalProperties instead of this dynamic element.

• description: A description of the array

• items: A representation of the items contained in the object

• sample: A sample value which will be displayed on the sample fieldset.

• optional: A boolean indicating if the parameter is compulsory or optional. Default False.

• maxItems: A positive integer is expected.

• minItems: A positive integer is expected.

• constraints: A dictionary of constraints * {constraint_name}: A string is expected

sample:

metadatas:
type: dynamic
description: A list of key/value to store what you want
item: string

Customizations

3.4. Source’s File Format 23

ApiDoc Documentation, Release 1.4

Variables

Variables can be provided by command line arguments or in the config file (see input). Each value of the source file
can be (or contain) a variable.

Sample using a variable string context:

configuration:
title: ${applicationName}
description: Official documentation of ${applicationName}

Sample using a variable to set a boolean:

categories:
MyExperiments:
display: ${displayExperimentals}

Sample using a variable used in extends context:

versions:
v1:
...

v2:
extends: ${officialVersion}

Extends

ApiDoc provides a way to simplfy source files writing by using an extends system. You can extend your versions,
categories, methods, types and references. To extend an element you only have to specify the name of referenced
elements with extends: referenced_name. The referenced name is always of the same type as your elements (a version
extends a version, a method extends a method, etc...). If the referenced element is a sibling of the current element,
you can just specify its name, if the reference does not belong to the same parent, you must then specify the name of
the parent followed by a /. For exemple, if your methods A and B belong to different versions you must use extends:
version_of_b/method_b for method A to extend method B. Extensions are recursive, but you can break recursion on
any element by using inherit: false and you can remove an element with removed: true.

Sample using an extension on the version:

versions:
v1:
...

v2:
extends: v1

Sample using an extension on a method with relative path and absolute path:

versions
v1:
methods:

Request:
...

AuthenticatedRequest:
extends: Request

v2:
methods:

Login:
extends: v1/Request

24 Chapter 3. Contents

ApiDoc Documentation, Release 1.4

Sample using an extension where the method ListClientWithDetails extends ListClients but not for the response_body
which is redefined:

methods:
ListClients:
...

ListClientWithDetails:
extends: ListClients
response_body:

inherit: false
...

Sample using an extension where the section SessionAuthentication extends FormAuthentication but the content of
the body of the method Login is removed:

methods:
Login:
request_body:

type: object
properties:

login:
type: string

password:
type: string

SSO:
extends: Login
request_parameters:

token_id:
type: string

request_body:
removed: true

You can extend multiple elements by providing an list of extensions.

Methods:
Authenticated:
request_header:

X-Auth-Token:
type: string

Paginated:
request_parameter:

index:
type: integer

limit:;
type: integer

Customers:
extends:
- Authenticated
- Paginated

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

3.5. Contributing 25

ApiDoc Documentation, Release 1.4

Types of Contributions

Report Bugs

Report bugs at https://github.com/SolutionsCloud/apidoc/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” is open to whoever wants to
implement it.

Write Documentation

ApiDoc could always use more documentation, whether as part of the official ApiDoc docs, in docstrings, or even on
the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/SolutionsCloud/apidoc/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Setting Up the Code for Local Development

Here’s how to set up ApiDoc for local development.

1. Fork the ApiDoc repo on GitHub.

2. Clone your fork locally

$ git clone git@github.com:your_name_here/apidoc.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development

26 Chapter 3. Contents

https://github.com/SolutionsCloud/apidoc/issues
https://github.com/SolutionsCloud/apidoc/issues

ApiDoc Documentation, Release 1.4

$ mkvirtualenv apidoc
$ cd apidoc/
$ pip install -e .[contribute]

4. Create a branch for local development

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass the tests and flake8

$ flake8 --show-source --ignore=E501 --statistics .
$ python setup.py test

6. Commit your changes and push your branch to GitHub

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Check that the test coverage hasn’t dropped

$ behave --format progress2 tests/features/
$ coverage3 run --branch --source apidoc setup.py test
$ coverage3 report -m

8. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.2, 3.3. Check https://travis-ci.org/SolutionsCloud/apidoc/pull_
requests and make sure that the tests pass for all supported Python versions.

Tips

To run a particular test

$ python -m unittest tests.test_find.TestFind.test_find_template

To run a subset of tests

$ python -m unittest tests.test_find

3.5. Contributing 27

https://travis-ci.org/SolutionsCloud/apidoc/pull_requests
https://travis-ci.org/SolutionsCloud/apidoc/pull_requests

ApiDoc Documentation, Release 1.4

28 Chapter 3. Contents

CHAPTER 4

Licenses

ApiDoc uses the following projects:

Twitter Bootstrap

Jquery

MouseTrap

Icon Minia

Entypo

IcoMoon

29

http://twitter.github.com/bootstrap
http://jquery.org/
http://craig.is/killing/mice/
http://dribbble.com/shots/598215-Icon-Minia-139-Vector-Icons
http://www.entypo.com/
http://keyamoon.com/icomoon/

	Summary
	Requirements
	Contents
	Quick Start
	Usage of ApiDoc
	Config's File Format
	Source's File Format
	Contributing

	Licenses

